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Abstract---This chapter describes a method of segmenting MR 
images into different tissue classes, using a modified Gaussian 
Mixture Model. By knowing the prior spatial probability of each 
voxel being grey matter, white matter or cerebra-spinal fluid, it 
is possible to obtain a more robust classification. In addition, a 
step for correcting intensity non-uniformity is also included, 
which makes the method more applicable to images corrupted by 
smooth intensity variations. The segmentation is normally run on 
unprocessed brain images, where non-brain tissue is not first 
removed. This results in a small amount of non-brain tissue 
being classified as brain. However, by using morphological 
operations on the extracted GM and WM segments, it is possible 
to remove most of this extra tissue. The procedure begins by 
eroding the extracted WM image, so that any small specs of 
misclassified WM are removed. This is followed by conditionally 
dilating the eroded WM, such that dilation can only occur where 
GM and WM were present in the original extracted segments. 
Although some non-brain structures (such as part of the sagittal 
sinus) may remain after this processing, most non-brain tissue is 
removed. 
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I.  INTRODUCTION 

 
In computer vision, segmentation refers to the process of 

partitioning a digital image into multiple segments (sets of 
pixels, also known as super pixels). The goal of segmentation 
is to simplify and/or change the representation of an image 
into something that is more meaningful and easier to 
analyse.[1] Image segmentation is typically used to locate 
objects and boundaries (lines, curves, etc.) in images. More 
precisely, image segmentation is the process of assigning a 
label to every pixel in an image such that pixels with the same 
label share certain visual characteristics. 
The result of image segmentation is a set of segments that 
collectively cover the entire image, or a set of contours 
extracted from the image (see edge detection). Each of the 
pixels in a region are similar with respect to some 
characteristic or computed property, such as colour, intensity, 
or texture. Adjacent regions are significantly different with 
respect to the same characteristics.[1] When applied to a stack 
of images, typical in Medical imaging, the resulting contours 

after image segmentation can be used to create 3D 
reconstructions with the help of interpolation algorithms like 
Marching cubes. Healthy brain tissue can generally be 
classified into three broad tissue types on the basis of an MR 
image. These are grey matter (GM), white matter (WM) and 
cerebra-spinal fluid (CSF). This classification can be 
performed manually on a good quality T1 image, by simply 
selecting suitable image intensity ranges which encompass 
most of the voxel intensities of a particular tissue type. 
However, this manual selection of thresholds is highly 
subjective. Some groups have used clustering algorithms to 
partition MR images into different tissue types, either using 
images acquired from a single MR sequence, or by combining 
information from two or more registered images acquired 
using different scanning sequences or echo times (eg. proton-
density and T2-weighted). The approach described here is a 
version of the `mixture model' clustering algorithm [2], which 
has been extended to include spatial maps of prior belonging 
probabilities, and also a correction for image intensity non-
uniformity that arises for many reasons in MR imaging. 
Because the tissue classification is based on voxel intensities, 
partitions derived without the correction can be confounded 
by these smooth intensity variations. 
 
 

 
Figure 1: The a priori probability images of GM, WM, CSF and non-brain 
tissue. Values range between zero (white) and one (black). 

 
The model assumes that the MR image (or images) consists of 
a number of distinct tissue types (clusters) from which every 
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voxel has been drawn. The intensities of voxels belonging to 
each of these clusters confirms to a normal distribution, which 
can be described by a mean, a variance and the number of 
voxels belonging to the distribution. For multi-spectral data 
(e.g. simultaneous segmentation of registered T2 and PD 
images), multivariate normal distributions can be used. In 
addition, the model has approximate knowledge of the spatial 
distributions of these clusters, in the form of prior probability 
images. Before using the current method for classifying an 
image, the image has to be in register with the prior 
probability images. The registration is normally achieved by 
least squares matching with template images in the same 
stereobatic space as the prior probability images. One of the 
greatest problems faced by tissue classification techniques is 
non-uniformity of the images intensity. Many groups have 
developed methods for correcting intensity non-uniformities, 
and the scheme developed here shares common features. 
There are two basic models describing image noise properties: 
multiplicative noise and additive noise.  
 
 
 

 
 

 
Figure . 2: The MR images are modelled as a number of distinct clusters (top 
left), with different levels of Gaussian random noise added to each cluster 
(top right). The intensity modulation is assumed to be smoothly varying 
(bottom left), and is applied as a straightforward multiplication of the 
modulation field with the image (bottom right).  
 
 
The current method uses a multiplicative noise model, which 
assumes that the errors originate from tissue variability rather 

than additive Gaussian noise from the scanner. Figure. 2 
illustrate the model used by the classification. Non-uniformity 
correction methods all involve estimating a smooth function 
that modulates the image intensities. The multiplicative model 
describes images that have noise added before being 
modulated by the non-uniformity eld (i.e., the standard 
deviation of the noise is multiplied by the modulating eld), 
whereas the additive version models noise that is added after 
the modulation (standard deviation is constant). 
 If the function is is not forced to be smooth, then it will begin 
to  the higher frequency intensity variations due to different 
tissue types, rather than the low frequency intensity non-
uniformity artefact. Spline [7, 4] and polynomial [5, 6] basis 
functions are widely used for modelling the intensity variation. 
In these models, the higher frequency intensity variations are 
restricted by limiting the number of basic functions. In the 
current method, a Bayesian model is used, where it is assumed 
that the modulation field (U) has been drawn from a 
population for which the a priori probability distribution is 
known, thus allowing high frequency variations of the 
modulation field to be penalized. 
 

II. TISSUE CLASSIFICATION 
 

The explanation of the tissue classification algorithm will be 
simplified by describing its application to a single two 
dimensional image. A number of assumptions are made by the 
classification model. The first is that each of the I x J voxels 
of the image (F) has been drawn from a known number (K) of 
distinct tissue classes (clusters). The distribution of the voxel 
intensities within each class is normal (or multi-normal for 
multi-spectral images) and initially unknown. The distribution 
of voxel intensities within cluster k is described by the number 
of voxels within the cluster (hk), the mean for that cluster (vk), 
and the variance around that mean (ck). Because the images 
are matched to a particular stereotaxic space, prior 
probabilities of the voxels belonging to the grey matter (GM), 
white matter (WM) and cerebra-spinal uid (CSF) classes are 
known. This information is in the form of probability images 
{ provided by the Montreal Neurological Institute [9, 8, 10] as 
part of the ICBM, NIH P-20 project (Principal Investigator 
John Mazziotta), and derived from scans of 152 young healthy 
subjects. These probability images contain values in the range 
of zero to one, representing the prior probability of a voxel 
being either GM, WM or CSF after an image has been 
normalized to the same space (see Figure.1 ). The probability 
of a voxel at co-ordinate i; j belonging to cluster k is denoted 
by bijk. 
The final assumption is that the intensity and noise associated 
with each voxel in the image has been modulated by 
multiplication with an unknown smooth scalar field. There are 
many unknown parameters to be determined by the 
classification algorithm, and estimating any of these requires 
knowledge of the others. Estimating the parameters that 
describe a cluster (hk, vk and ck) relies on knowing which 
voxels belong to the cluster, and also the form of the intensity 
modulating function. Estimating which voxels should be 
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assigned to each cluster requires the cluster parameters to be 
defined, and also the modulation field. In turn, estimating the 
modulation field needs the cluster parameters and the 
belonging probabilities. 
The problem requires an iterative algorithm (see Figure.3). It 
begins by assigning starting estimates for the various 
parameters. The starting estimate for the modulation field is 
typically uniformly one. Starting estimates for the belonging 
probabilities of the GM, WM and CSF partitions are based on 
the prior probability images. Since there are no prior 
probability maps for background and non-brain tissue clusters, 
they are estimated by subtracting the prior probabilities for 
GM, WM and CSF from a map of all ones, and dividing the 
result equally between the remaining clusters. 
 
 

 
 

Figure .3: A flow diagram for the tissue classification. 
 
 

 

Each iteration of the algorithm involves estimating the cluster 
parameters from the non-uniformity corrected image, 
assigning belonging probabilities based on the cluster 
parameters, checking for convergence, and re-estimating and 
applying the modulation function. With each iteration, the 
parameters describing the distributions move towards a better 
_t and the belonging probabilities (P) change slightly to reflect 
the new distributions. This continues until a convergence 
criterion is satisfied. The parameters describing clusters with 
corresponding prior probability images tend to converge more 
rapidly than the others. This may be partly due to the better 
starting estimates. The final values for the belonging 
probabilities are in the range of 0 to 1, although most values 
tend to stabilize very close to one of the two extremes. The 
algorithm is in fact an expectation maximization (EM) 
approach, where the E-step is the computation of the 

belonging probabilities, and the M-step is the computation of 
the cluster and non-uniformity correction parameters. The 
individual steps involved in each iteration are now described 
in more detail. 
1. Estimating the Cluster Parameters 
This stage requires the most recent estimate of the modulation 
function (U, where uij is the multiplicative correction at voxel 
i; j), and the current estimate of the probability of voxel i; j 
belonging to class k, which is denoted by pijk. The first step is 
to compute the number of voxels (h) belonging to each of the 
K clusters as: 
 
                 hk= Pijk  over K=1….k 
Mean voxel intensities for each cluster (v) are computed. This 
step effectively produces a weighted mean of the image 
voxels, where the weights are the current belonging 
probability estimates: 
 

                Uk=   over K=1….k 

 
 

 
Then the variance of each cluster (c) is computed in a similar 
way to the mean: 

 
 
 

                   Ck =      
 
 
 

2. Assigning Belonging Probabilities 
The next step is to re-calculate the belonging probabilities. It 
uses the cluster parameters computed in the previous step, 
along with the prior probability images and the intensity 
modulated input image. Baye’s rule is used to assign the 
probability of each voxel belonging to each cluster: 

 
 

                              

            Pijk=            over i= 1....I, j=1...J, k=1...K 
 
where pijk is the a posterior probability that voxel i; j belongs 
to cluster k given its intensity of fij , rijk is the likelihood of a 
voxel in cluster k having an intensity of fik, and sijk is the a 
priori probability of voxel i; j belonging in cluster k. The 
likelihood function is obtained by evaluating the probability 
density functions for the clusters at each of the voxels: 
 

            rijk= uij/(2 Ck)
1/2  exp ( ) 

 

 over i = 1::I, j = 1::J and k = 1::K. 
The prior (sijk) is based on two factors: the number of voxels 
currently belonging to each cluster (hk), and the prior 
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probability images derived from a number of images (bijk). 
With no knowledge of the spatial prior probability distribution 
of the clusters or the intensity of a voxel, then the a priori 
probability of any voxel belonging to a particular cluster is 
proportional to the number of voxels currently included in that 
cluster. However, with the additional data from the prior 
probability images, a better estimate for the priors can be 
obtained: 

 
 

                                    Sijk=    
 

 

over i = 1…..I, j = 1……J and k = 1…..K. 
 

The algorithm is terminated when the change in log-likelihood 
from the previous iteration becomes negligible. 
3 Estimating the Modulation Function 
To reduce the number of parameters describing an intensity 
modulation field, it is modelled by a linear combination of 
low frequency discrete cosine transform (DCT) basis 
functions, which were chosen because there are no constraints 
at the boundary. A two (or three) dimensional discrete cosine 
transform (DCT) is performed as a series of one dimensional 
transforms, which are simply multiplications with the DCT 
matrix. The elements of a matrix (D) for computing the first 
M coefficients of the one dimensional DCT of a vector of 
length I is given by: 
 

            Di1=            over i=1...I 

 

            Dim=    over i=1...I, m=2..M 

The matrix notation for computing the first Mx N coefficients 
of the two dimensional DCT of a modulation  field U is  Q = 
D1

T
 UD2, where the dimensions of the DCT matrices D1 and 

D2 are IxM and JxN respectively, and U is an IxJ matrix. The 

approximate inverse DCT is computed by U  D1QD2 T . An 
alternative representation of the two dimensional DCT is 
obtained by reshaping the I x J matrix U so that it is a vector 
(u). Element i + (j - 1) x I of the vector is then equal to 
element i; j of the matrix. The two dimensional DCT can then 
be represented by q = DTu, where D = D2x D1 (the Kronecker 
tensor product of D2 and D1), and u ' Dq. 
The sensitivity correction field is computed by re-estimating 
the coefficients (q) of the DCT basis functions such that the 
product of the likelihood and a prior probability of the 
parameters is increased. This can be formulated as an iteration 
of a Gauss-Newton optimisation algorithm. 
 
       q(n+1)= (C0

-1+A) (C0
-1 q0+A q

(n)-b)) 
 
where q0 and C0 are the means and covariance matrices 
describing the a priori probability distribution of the 
coefficients. Vector b contains the first derivatives of the log-
likelihood cost function with respect to the basis function 

coefficients, and matrix A contains the second derivatives of 
the log-likelihood. These can be constructed efficiently using 
the properties of Kronecker tensor products. 
 

III. CONCLUSIONS 
 

The current segmentation method is fairly robust and accurate 
for high quality T1 weighted images, but is not beyond 
improvement. Currently, each voxel is assigned a probability 
of belonging to a particular tissue class based only on its 
intensity and information from the prior probability images. 
There is a great deal of other knowledge that could be 
incorporated into the classification. For example, if all a 
voxel's neighbours are grey matter, then there is a high 
probability that it should also be grey matter. Other 
researchers have successfully used Markov random field 
models to include this information in a tissue classification 
model [7, 12, 6, 13,14]. Another very simple prior, that can be 
incorporated, is the relative intensity of the different tissue 
types [10]. For example, when segmenting a T1 weighted 
image, it is known that the white matter should have a higher 
intensity than the grey matter, which in turn should be more 
intense than the CSF. When computing the means for each 
cluster, this prior information could sensibly be used to bias 
the estimates. In order to function properly, the classification 
method requires good contrast between the different tissue 
types. However, many central grey matter structures have 
image intensities that are almost indistinguishable from that of 
white matter, so the tissue classification is not always very 
accurate in these regions. Another related problem is that of 
partial volume. Because the model assumes that all voxels 
contain only one tissue type, the voxels that contain a mixture 
of tissues may not be modelled correctly. In particular, those 
voxels at the interface between white matter and ventricles 
will often appear as grey matter. Each voxel is assumed to be 
of only one tissue type, and not a combination of different 
tissues, so the model's assumptions are violated when voxels 
contain signal from more than one tissue type. This problem is 
greatest when the voxel dimensions are large, or if the images 
have been smoothed, and is illustrated using simulated data in 
Figure 4. The effect of partial volume is that it causes the 
distributions of the intensities to deviate from normal. Some 
authors have developed more complex models than mixtures 
of Gaussians to describe the intensity distributions of the 
classes [15]. A more recent commonly adopted approach 
involves modelling separate classes of partial volume voxels 
[13, 16, 17]. 
In order for the Bayesian classification to work properly, an 
image volume must be in register with a set of prior 
probability images used to instate the priors. Figure 5 shows 
the effects of mis.-registration on the accuracy of 
segmentation. This figure also gives an indication of how far a 
brain can deviate from the normal population of brains (that 
constitute the prior probability images) in order for it to be 
segmented adequately. Clearly, if the brain cannot be well 
registered with the probability images, then the segmentation 
will not be as accurate. This fact also has implications for 
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severely abnormal brains, as they are more difficult to register 
with images that represent the prior probabilities of voxels 
belonging to different classes. Segmenting such abnormal 
brains can be a problem for the algorithm, as the prior 
probability images are based on normal healthy brains. The 
profile in Figure 5 depends on the smoothness or resolution of 
the prior probability images. By not smoothing the prior 
probability images, the segmentation would be optimal for 
normal, young and healthy brains. However, these images 
may need to be smoother in order to encompass more 
variability when patient data are to be processed. 
 
 

 
 
Figure 4: Simulated data showing the effects of partial volume on the 
intensity histograms. On the upper left is a simulated image consisting of 
three distinct clusters. The intensity histogram of this image is shown on the 
lower left and consists of three Gaussian distributions. The image at the top 
right is the simulated image after a small amount of smoothing. The 
corresponding intensity histogram no longer shows three distinct Gaussian 
distributions. 
 

As an example, consider a subject with very large ventricles. 
CSF may appear where the priors suggest that tissue should 
always be WM. These CSF voxels are forced to be 
misclassified as WM, and the intensities of these voxels are 
incorporated into the computation of the WM means and 
variances. This results in the WM being characterized by a 
very broad distribution, so the algorithm is unable to 
distinguish it from any other tissue. For young healthy 
subjects, the classification is normally good, but caution is 
required when the method is used for severely pathological 
brains. MR images are normally reconstructed by taking the 
modulus of complex images. Normally distributed complex 
values are not normally distributed when the magnitude is 
taken. Instead, they obey a Rician distribution. This means 

that any clusters representing the background are not well 
modelled by a single Gaussian, but it makes very little 
difference for most of the other clusters. 
 

 
 

Figure 5: Segmentation accuracy with respect to misregistration with the prior 
probability images. 
 

The segmentation is normally run on unprocessed brain 
images, where non-brain tissue is not first removed. This 
results in a small amount of non-brain tissue being classified 
as brain. However, by using morphological operations on the 
extracted GM and WM segments, it is possible to remove 
most of this extra tissue. The procedure begins by eroding the 
extracted WM image, so that any small specs of misclassified 
WM are removed. This is followed by conditionally dilating 
the eroded WM, such that dilation can only occur where GM 
and WM were present in the original extracted segments. 
Although some non-brain structures (such as part of the 
sagittal sinus) may remain after this processing, most non-
brain tissue is removed. 
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